

# The $Z \rightarrow b\bar{b}$ Search at CDF-II

The  $3^{rd}$  generation as a PROBE FOR NEW PHYSICS



Research Training Networks

Rome, Dec.  $17^{th}$ , 2002

Giorgio Cortiana

Padova University

### Summary

- ▶ Past Searches at CDF
- ▶ What can we learn from  $Z \to b\bar{b}$ ?
- ► Can we do better things in Run-II?
- ► The Top Mass measurements
- ▶ A new trigger for  $Z \to b\bar{b}$
- ▶ Projections to 2  $fb^{-1}$
- ► Extracting the b-jet energy scale
- **▶** Conclusions





### Past Searches



Fig. Results of the counting experiment (hep-ex/9806022)

The  $Z \to b\bar{b}$  process was for the first time isolated during the Run-I by the CDF-Collaboration.

Events were collected using a muon based trigger and selected requiring:

- 2 jets with  $E_T \geq 10~GeV$  tagged as coming from a b-quark decay;
- $\Delta \phi_{jj} > 3 \ rad;$
- $\Sigma_3 E_T < 10 \; GeV$ .





#### Past Searches - cont'd

#### **CDF PRELIMINARY**



Another method to extract the amount of signal is that of performing an unbinned two component fit (signal + background shapes) to the dijet mass distribution. The number of events attributed to a  $Z \to b\bar{b}$  signal in the region around 90 GeV was estimated to be:

$$N_Z = 91 \pm 30(stat.) \pm 16(syst.)$$

Dijet Invariant Mass (GeV/c<sup>2</sup>) ► The signal shape was extracted from a Monte Carlo template while

- Unbinned Likelihood Fit

120 140 160 180 200

▶ the background shape was obtained from data events containing only one tagged jet.

60

80

**2**3000

2000

1000





## What can we learn from $Z \rightarrow b\bar{b}$ ?



**During Run-I**, Monte Carlo based jet energy corrections (based on muon momentum, the  $E_T$  and the jet charged fraction) allowed to obtain a better resolution on the  $Z \to b\bar{b}$  mass peak.

In Run-II, we can also determine jet corrections using the Z peak itself as a calibration tool. It is then possible to:

- test and tune b-specific jet corrections;
- extract the b-jet energy scale and its uncertainty.

This information can be used in different analyses involving events containing b-jets, such as:

- Associated Higgs production.
- $ightharpoonup tar{t}$  production.





## Why do b-jets require more attention?

While large samples of events with an high- $P_t$  photon or a leptonic Z recoiling against an hadronic jet may give the possibility to determine the energy scale for the light quark jets,

#### the situation is different for b-jets because of:

- $\blacktriangleright$  the very low cross section of processes with b-quark recoiling against photons or Z bosons.
- ▶ the presence of neutrino and leptons inside b-jets considerably alter the calorimetric response.

B-jets need an independent tuning!





### Can we do better things during Run-II?

Asking this question requires some information about the upgrade of the experimental complex. So we can start asking what is it new?

#### The accelerator:

- 1.) The C.M energy:  $\sqrt{s} = 2.0 \ TeV$  instead of 1.8 TeV,
- **2.)** the Instantaneous Luminosity:  $\mathcal{L}_{ist} \sim 10^{32} \ cm^{-2} s^{-1} \ (\mathcal{L}_{ist} \sim 10^{31} \ cm^{-2} s^{-1})$ ,
  - 1.) + 2.)  $\rightarrow$  increase of the available statistics

#### CDF-II detector:

- 3.) New 7 layers silicon detector + new central tracking chamber
- 4.) New Plug calorimeters
- 5.) New silicon detector based trigger at work (SVT)
  - 3.) + 4.) + 5.)  $\rightarrow$  more discriminating power and increase of the accuracy of the measurement





#### The Top mass measurements - 1

During Run I, the single most precise technique for the top mass measurement was the one based on lepton+jets events collected by CDF.

| Set                  | $N_{obs}$ | $F_{bgr}(\%)$ | $M_t \; (GeV)$    |
|----------------------|-----------|---------------|-------------------|
| 2 SVX                | 5         | $5\pm3$       | $170.1 \pm 9.3$   |
| 1 SVX                | 15        | $13\pm 5$     | $178.0 \pm 7.9$   |
| $\operatorname{SLT}$ | 14        | $40 \pm 9$    | $142^{+33}_{-14}$ |
| 4 jets               | 42        | $56\pm15$     | $181.0 \pm 9.0$   |





The final result from single lepton events

was  $M_t = 176.1 \pm 5.1 \pm 5.3 \; GeV$ 

(PRD 63, 32003 (2001)).





## The Top mass - Systematics

Tevatron Top Quark Mass Measurements



| Systematics on $M_t$ $[GeV/c^2]$ | Run I | Run II |
|----------------------------------|-------|--------|
| Jet energy scale                 | 4.4   | 2.2    |
| Signal Model                     | 2.6   | 0.4    |
| MC generators                    | 0.1   | 0.1    |
| Background model                 | 1.3   | 0.3    |
| b-tagging bias                   | 0.4   | 0.4    |
| P.D.F.                           | 0.3   | 0.3    |
| Total                            | 5.3   | 2.3    |

➤ The systematics even in Run I are larger than the statistical uncertainty.

- ▶ The uncertainty on the b-jet energy scale affected the top mass measurement as the dominant source of systematic error.
- We can use the high statistics available with Run II for a better determination of the b-jet energy scale using the  $Z \to b\bar{b}$  channel. This is our main goal.





## The new Trigger for $Z \rightarrow b\bar{b}$ events

**During Run I**, to see  $Z \to b\bar{b}$  decays, we triggered on

**MUONS** 

In Run II, with

SVT

, we trigger on the impact parameter of charged tracks.



This allows to collect large samples of unbiased b-enriched dijet events.

The trigger requirements develop through all the trigger system levels, but essentially, we select events containing:

#### **Z\_BB Trigger** $(\sigma_{trg} \sim 14 \ nb)$

- 2 jets with  $E_T > 10 \; GeV$
- 1 trk with  $P_T > 2.5 \; GeV$
- 1 trk with  $P_T > 3.5 \; GeV$
- both tracks with 150  $\mu m < |d_0| < 1 \ mm$
- $\Delta \phi_{tt} > 150^{\circ}$

Efficiency on signal  $= 2.16 \pm 0.07\%$ 





## Projections to $2 fb^{-1}$



- ► Early data from Run II have confirmed the potential power of the SVT-based triggers in collecting heavy-flavour samples.
- ▶ On the offline side, b-jet tagging is to date under optimization but a development version is available to get first hint for analysis tools.
- First data collected with dedicated a  $Z \to b\bar{b}$  trigger allow us to get some extrapolation on how, with the actual trigger running conditions, will appear the di-jet invariant mass.

The figure shows the result of the extrapolation by means of a pseudoexperiment technique. In the plot,

- ▶ the signal shape is obtained from Monte Carlo events,
- ▶ while the background one follows the single tag data behavior.

The amount of signal events is determined on the base of trigger efficiency, collected luminosity and predicted  $Z \to b\bar{b}$  cross section ( $\sim 1.2~nb$ ) for Run-II.





## Extracting the b-jet Energy scale

- Let us now suppose to have the  $Z \to b\bar{b}$  peak, as shown in the previous slide.
- ▶ It is possible to **iterate the extrapolation** procedure, performing several pseudoexperiments.
- Let us try to describe the signal with different MC template, in which the jet energy is varied by means of multiplying for a scaling factor, we call jet energy scale factor.
- For each result of the pseudoexperiment, we can **fit** the mass spectra with the so obtained template for different values of the jet energy factor, maintaining the same background shape.
- A two component fit is performed with  $M_Z$  and its width fixed to the MC template values.
- ▶ Each fit will return its  $\chi^2/ndf$ .
- In this way, we can evaluate the fit quality looking at its  $\chi^2/ndf$ .





## Extracting the b-jet Energy scale - cont'd

For a given pseudoexperiment,

the shape of the exptrapolated data is in this way fitted for various values of the energy scale factor.

In the following, the  $\chi^2/ndf$  distribution versus energy scale factor is shown.



A polinomial fit return the value of the scale at which the  $\chi^2/ndf$  is minimum. A typical result is:

$$scale\ factor = 1.005 \pm 0.003$$

The error on the energy scale is determined as the difference between the scale factor values corresponding to a variation of the  $\chi^2/ndf$  of one unit from the minimum. We can iterate the procedure for N pseudo-experiments.





## Conclusions

- ▶ The  $Z \to b\bar{b}$  channel should be considered as a milestone for all future analyses involving the use of high- $P_T$  b-jets
  - ▶ it provides the possibility of tuning and testing specific
    ▶ jet energy corrections;
  - ▶ as a calibration channel it can be used to determine the
    b-jet energy scale and its uncertainty.
- A  $Z \to b\bar{b}$ -group was formed with the collaboration of **Padova**, **Chicago**, **Harward** and **Berkeley**. Common tools were defined. Right now the group is working producing several MC events and testing offline packages.

See you at the Winter Conferences for first results!





## Let us look at b-jets...

During Run II, CDF can identify secondary vertices inside jets in an extended range in pseudorapidity.

A new trigger system,

is available for the

online identification

of hadronic events with

displaced tracks

with respect to the interaction point. SVT allows measurements of  $P_T$ ,  $\phi$  and impact parameter d of charged tracks inside the region  $|\eta| < 2$  with a resolution With low statistics (11.6  $pb^{-1}$ ) CDF alof  $\sigma_d \sim 45 \ \mu m$ .

 $m(D_s^{\pm}) - m(D^{\pm}) =$  $99.28 \pm 0.43 \pm 0.27 \; MeV/c^2$ (PDG 2002:  $99.2 \pm 0.5 \ MeV/c^2$ )



ready produces its first physics results.





# Definition of the impact parameter

